본문 바로가기

파인튜닝4

초거대 AI 정의- 심층 신경망으로 구현된 크기가 매우 큰 AI로 인공신경망의 파라미터(매개변수)가 무수히 많은 인공지능 모델 - 대용량의 연산이 가능한 컴퓨팅 인프라를 기반으로 대규모 용량의 데이터를 학습해 특정 용도에 한정하지 않고 종합적이고 자율적으로 사고, 학습, 판단, 행동하는 인간의 뇌 구조를 닮은AI(인공지능)키워드- 대규모 파라미터, 사전학습, 파인튜닝 메커니즘기술요소1980~1990 - 통계기반언어모델 - 최초의 언어모델 출현 2017 - 트랜스포머 알고리즘 - Attention 기반 트랜스포머 알고리즘의 출현 2018 - BERT 모델 - 트랜스포머의 인코더를 활용한 BERT 모델 출현 2018 - GPT 모델 - 트랜스포머의 디코더를 활용한 GPT 모델 출현 2020~2021 - GPT-3, La.. 2024. 9. 20.
Zero-shot, One-shot, Few-shot Learning 정의- One-shot learning: 하나의 샘플 이미지만으로 새로운 클래스를 인식하는 것을 의미 - Few-shot learning: 한 클래스당 일부 샘플 이미지만 사용하여 새로운 클래스를 인식하는 것을 의미 - Zero-shot learning (ZSL): 라벨링 되지 않은 새로운 클래스에 대한 분류 작업을 수행할 때, 이전에 학습된 모델을 사용하여 분류하는 기술 키워드- 학습속도 향상, 파인튜닝 메커니즘 기술요소One-shot learning- Siamese networks, 매칭 네트워크.- 대조 손실, 삼중항 손실.Few-shot learning- 원형 네트워크, 매칭 네트워크, 환각.- 대조 손실, 삼중항 손실.Zero-shot learning (ZSL)- 시맨틱 임베딩, 속성 기반 학습.. 2024. 9. 20.
ChatGPT(3, 3.5, 4Ο) ChatGPT 3 or 3.5정의- GPT-4Ο를 기반으로 사람과 자연스럽게 대화하는 것처럼 상호작용을 구현, 대화에 최적화된 대화전 문 인공지능 키워드- SFT모델, 보상모델, PPO, 생성적 AI, 트랜스포머, Attention Mechanisms, 파인튜닝, 프롬프 트 엔지니어링 메커니즘 기술요소 RLHFReinforcement Learning with Human Feedback - 강화 학습의 방법을 사용하여 사람의 피드백으로 언어 모델 을 직접 최적화 수행 PPOProximal Policy Optimization- OpenAI에서 개발한 모델 없는 강화 학습 알고리즘ChatGPT 4 정의- OpenAI에서 출시한 현재 가장 창의적이며, 일반지식과 문제해결력을 갖춘 모델- 기존 모델(ChatGPT.. 2024. 9. 20.
FMOps(Foundation Model Operations) 정의- 기반 모델(Foundation Model), 그중에서도 특히 LLM(Large language model) 기반의 앱 개발을 위한 방법론 키워드- 기반 모델, 프롬프트 엔지니어링, 프롬프트 체이닝, 파인튜닝 메커니즘 기술요소프롬프트 관련 프롬프트 엔지니어링  - Pre-training된 LLM을 별도의 학습없이 사용자가 원하는 답변을 생성하도록 입력 프롬프트를 효과적으로 설계하는 기술 프롬프트 체이닝  - 체인 프레임워크로 기반 모델에 외부 정보를 저장, 인덱싱, 주입하여 기반 모델이 보다 복잡한 테스크를 수행하게 함 데이터 및 모델 관련 데이터 임베딩  - 데이터를 벡터 단위로 쪼개 데이터 베이스에 저장 및 인덱싱 이후에 LLM에 주입하여 사용자 데이터 기반의 결과 생성 기반 모델 파인튜닝  -.. 2024. 9. 20.