Zero-shot, One-shot, Few-shot Learning
정의- One-shot learning: 하나의 샘플 이미지만으로 새로운 클래스를 인식하는 것을 의미 - Few-shot learning: 한 클래스당 일부 샘플 이미지만 사용하여 새로운 클래스를 인식하는 것을 의미 - Zero-shot learning (ZSL): 라벨링 되지 않은 새로운 클래스에 대한 분류 작업을 수행할 때, 이전에 학습된 모델을 사용하여 분류하는 기술 키워드- 학습속도 향상, 파인튜닝 메커니즘 기술요소One-shot learning- Siamese networks, 매칭 네트워크.- 대조 손실, 삼중항 손실.Few-shot learning- 원형 네트워크, 매칭 네트워크, 환각.- 대조 손실, 삼중항 손실.Zero-shot learning (ZSL)- 시맨틱 임베딩, 속성 기반 학습..
2024. 9. 20.
ChatGPT(3, 3.5, 4Ο)
ChatGPT 3 or 3.5정의- GPT-4Ο를 기반으로 사람과 자연스럽게 대화하는 것처럼 상호작용을 구현, 대화에 최적화된 대화전 문 인공지능 키워드- SFT모델, 보상모델, PPO, 생성적 AI, 트랜스포머, Attention Mechanisms, 파인튜닝, 프롬프 트 엔지니어링 메커니즘 기술요소 RLHFReinforcement Learning with Human Feedback - 강화 학습의 방법을 사용하여 사람의 피드백으로 언어 모델 을 직접 최적화 수행 PPOProximal Policy Optimization- OpenAI에서 개발한 모델 없는 강화 학습 알고리즘ChatGPT 4 정의- OpenAI에서 출시한 현재 가장 창의적이며, 일반지식과 문제해결력을 갖춘 모델- 기존 모델(ChatGPT..
2024. 9. 20.
AI Foundation Model
정의- 대규모 데이터셋에 의해 사전 학습되고, 출력의 범용성을 고려하여 설계되어 다양한 작업에 적용될 수 있는 AI 기초 모델- 반제품(semi-finished product) 키워드- 자기지도학습, adaption, 기반모델, 창발성, 균일화, 지식재산권, 탄소중립, 일자리 감소, XAI, 개인정보보호 메커니즘 기술요소- 학습 - 대규모 학습데이터 - 제조사별 상이한 디바이스 연동 및 등록 절차 - 대규모 파라미터 - 타 브랜드 디바이스 간 상호 연동 불가 확장성 - 전이학습 - 다양한 통신 프로토콜 혼합 사용에 따른 신뢰성 저하 - 균일화 - 적용될 수 있는 범위가 점차 확대되며 범용적 활용되는 현상 성능 - 창발성 - 모델이 스스로 어떠한 문제를 해결하기 위한 지식 도출 능력 - 다목적성 - NLP..
2024. 9. 20.
모델옵스(ModelOps)
정의- 기계학습 모델과 운영(operation)을 결합한 용어로 기계학습(ML) 모델의 거버넌스와 생명 주기 관리를 효과적으로 관리하고 운용하는데 초점을 맞춘 방법론 키워드- DataOps, DevOps, ML, Discovery, Governance, Deployment, 자동화, 생명주기관리 메커니즘 기술요소1) Discovery 데이터 과학자, 분석가, 비즈니스 사용자가 선택한 소프트웨어를 사용하여 가설을 테스트하고 모델을 실험하고 구축 2) Governance Discovery Environment에서의 모든 검증된 모델은 비즈니스 규칙 및 결정과 마찬가지로 모델 Repository에 저장(GitLab, GitHub 등) 3) Deployment - CI/CD를 통해 자동화 파이프라인을 생성. -..
2024. 9. 20.